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[1] We investigate seismicity near faults in the Southern California Earthquake Center
Community Fault Model. We search for anomalously large events that might be signs of a
characteristic earthquake distribution. We find that seismicity near major fault zones in
Southern California is well modeled by a Gutenberg-Richter distribution, with no evidence
of characteristic earthquakes within the resolution limits of the modern instrumental
catalog. However, the b value of the locally observed magnitude distribution is found to
depend on distance to the nearest mapped fault segment, which suggests that earthquakes
nucleating near major faults are likely to have larger magnitudes relative to earthquakes
nucleating far from major faults.

Citation: Page, M. T., D. Alderson, and J. Doyle (2011), The magnitude distribution of earthquakes near Southern California
faults, J. Geophys. Res., 116, B12309, doi:10.1029/2010JB007933.

1. Introduction

[2] It is well known that earthquake magnitudes within
large regions follow the Gutenberg-Richter (G-R) distribu-
tion. The Gutenberg-Richter magnitude distribution relates
the cumulative number of earthquakes N above a given
magnitude, M, by

log Nð Þ ¼ a � bM ; ð1Þ

where a and b are constants [Ishimoto and Iida, 1939;
Gutenberg and Richter, 1944]. The b value is generally
approximately 1 [Frohlich and Davis, 1993], which means,
in combination with constant stress drop scaling [e.g., Aki,
1972], that the number of earthquakes in a given magni-
tude range is proportional to the reciprocal of the fault rup-
ture area. For California, b = 1 matches the modern catalog
well [Felzer, 2008; Hutton et al., 2010].
[3] While the Gutenberg-Richter distribution is used to

model seismicity in large regions, there is some question as
to whether it applies to earthquakes in individual fault zones.
The characteristic magnitude distribution [Wesnousky et al.,
1983; Schwartz and Coppersmith, 1984; Wesnousky, 1994]
alternatively holds that large earthquakes in major fault
zones occur at a higher rate relative to smaller earthquakes
than the Gutenberg-Richter distribution would predict. The
characteristic magnitude distribution has been suggested in
part because of an apparent mismatch between paleoinferred
rates of large earthquakes on major faults and rates of smaller
earthquakes from the instrumental catalog for a narrow

region surrounding the fault. In this work we consider only
the modern instrumental catalog, for which hypocenters are
known and magnitudes are well characterized. This choice
will limit the size of the catalog and therefore the highest
magnitudes available; however, including data from many
faults throughout California, rather than studying a single
fault zone, improves the power of our tests considerably.
[4] The characteristic magnitude distribution is often

used in seismic hazard analysis [e.g., Working Group on
California Earthquake Probabilities, 1990a, 1990b, 1995,
1999; Field et al., 2008]. However, the use of the character-
istic earthquake model can lead to some difficulty in match-
ing regional catalog rates. On a state-wide basis, magnitudes
are G-R distributed, and it can be difficult to produce an
overall catalog that matches the G-R distribution when
seismicity on individual faults is modeled with a charac-
teristic distribution. Previous statewide hazard models for
California have contained discrepancies between historic
earthquake rates and rates given by the model between
magnitudes 6 and 7 [Field et al., 1999; Petersen et al., 2000].
Significant tinkering with model parameters has been
required to alleviate what has colloquially become known as
the “battle of the bulge” [Field et al., 2008].
[5] Inherent in the characteristic earthquake hypothesis is

a scaling break between the large and small events on a
given fault. Southern California is a good place to look for
such a scaling break, if it exists, since there are earthquake
catalogs of well-located earthquakes with well-characterized
magnitudes and digital models of 3-D fault surfaces in the
region. We investigate the magnitude distribution of earth-
quakes near major fault zones in Southern California to
determine if the largest events in fault zones are larger than
would be predicted by a Gutenberg-Richter distribution. We
begin by examining seismicity near the Parkfield section of
the San Andreas Fault before extending our analysis to all
major mapped fault zones in Southern California. We also
look for changes in the magnitude distribution with distance
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from major fault zones, to see if the catalog contains dif-
ferences between major fault seismicity and regional seis-
micity that are often assumed in seismic hazard models.

2. Seismicity Near Parkfield

[6] The Parkfield section of the San Andreas Fault has
been hypothesized to rupture in quasiperiodic “characteris-
tic” events of approximately magnitude 6 [Bakun and Lindh,
1985; Jackson and Kagan, 2006]. We do not consider time
dependence in this study, but focus instead on the magnitude
distribution for this fault section. Is there an increase in M6
earthquakes near Parkfield, beyond what would be consis-
tent with G-R statistics?
[7] Figure 1a shows the cumulative magnitude distribu-

tion for Parkfield section earthquakes. Events are included
from the ANSS catalog, 1984–2007, within 5 km of the fault
trace, as defined by the Working Group on California
Earthquake Probabilities [Field et al., 2008]. Comparing
directly to a best fit G-R curve, the G-R distribution appears

to severely underpredict the rate of M6 earthquakes. Even
accounting for b value error (95% confidence bounds for the
b value are determined by maximum likelihood [Aki, 1965]
does not account for this apparent overprediction. It is easy
to see from Figure 1a one reason for the development of the
characteristic earthquake hypothesis.
[8] However, this simple analysis fails to account for the

inherent variability in the tail of the distribution where
sampling error becomes important. We can see this by
generating 20 random sets of magnitudes drawn from the
Gutenberg-Richter distribution, each with the same number
of events as the Parkfield data set (Figure 1b). These samples
show that variability in the tail of the power law distribution
is the rule rather than the exception. In fact, considering this
variability, the rate of M6 events in Parkfield is consistent
with a b = 1 G-R distribution at 95% confidence (the exact
95% confidence bounds for each point in the curve are
shown with the shading in Figure 1b).

3. Magnitude Distributions in Individual Fault
Zones

[9] We systematically extend our analysis to all major
mapped faults in Southern California. We assign earth-
quakes, in 3D, to the nearest fault in the Southern California
Earthquake Center (SCEC) Community Fault Model (CFM),
version 3.0. This is similar to the rCFM earthquake data-
base [Woessner and Hauksson, 2006; Hauksson, 2010]
which assigns earthquakes to the nearest fault as defined by
the rectilinear CFM version 2.5. The SCEC CFM version 3.0
that we use in this analysis contains triangulated, nonplanar
fault surfaces. Like the rCFM catalog, we use events from
the Southern California Seismic Network from 1981 to 2004
(inclusive), relocated using a double-difference method
[Hauksson and Shearer, 2005]. We adjust the relocated cat-
alog in two ways: (1) we replace the magnitudes with more
recent magnitudes from the Southern California Seismic
Network (SCSN), and (2) we add missing events that are in
the SCSN catalog but absent from the older rCFM database.
This gives a total of 26,479 earthquakes above magnitude 2.5
and within 20 km of the CFM fault segments. Importantly,
the revised data set includes the 1992 M7.3 Landers earth-
quake, which is absent from the original relocated catalog.
This earthquake is the largest earthquake in the revised data
set. The addition of missing events and the use of newer
SCSN magnitudes do not significantly change the results
we present here.
[10] We separate the earthquakes into bins on the basis of

the fault zone to which each is assigned, which is the closest
fault in the CFM (we calculate the closest distance in 3D,
taking into account the depths of the events and the non-
planar fault sources of the CFM 3.0). The faults themselves
are chosen (“segmented”) just as they are defined in the
CFM. There is certainly some subjectivity in how segments
are defined; this cannot be avoided, but we do not personally
modify the faults as defined by the community consensus
CFM representation. The largest earthquakes in the catalog
may indeed rupture multiple segments, or even have hypo-
centers located by the catalog some distance from the pri-
mary rupture. We consider hypocenters only and do not use
extended sources or assign large earthquakes to multiple
segments; this also prevents data selection on our part as

Figure 1. The cumulative magnitude distribution for earth-
quakes within 5 km of the Parkfield section of the San
Andreas Fault is shown in blue. (a) An analysis of the b
value error alone could lead to the erroneous conclusion that
the largest events in this zone violate Gutenberg-Richter
(G-R) behavior. (b) However, random samples drawn from
a G-R distribution (black lines) demonstrate considerable
scatter. The largest event is within the scatter predicted from
random G-R samples and thus does not violate the null
hypothesis that Parkfield earthquake magnitudes are drawn
from a G-R distribution with a b value of 1.
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faults involved in particular events are subject to debate
(whereas hypocenter distance to the CFM is well defined).
[11] Fault traces and epicenters for the earthquakes in our

data set are shown in Figure 2. For the following analysis we
include events within 5 km of each fault plane segment and
with a magnitude above 2.5 to ensure completeness. Of the
163 faults in the CFM database, 155 faults have associated
earthquakes within 5 km and above the minimummagnitude.
[12] On the basis of the magnitude of the largest earth-

quake in each fault zone bin and the number of earthquakes
in that bin, we can obtain a p value. This gives the proba-
bility of observing a largest earthquake at least as extreme as
in that fault zone, provided that the null hypothesis is cor-
rect. Our null hypothesis is that earthquake magnitudes
within each fault zone follow a G-R distribution. The p value
for a set of N earthquakes with a largest observed magnitude
Mmax_observed is

p ¼ 1 � 1 � 10Mmin�Mmax observed
� �N

; ð2Þ

if the set is complete down to magnitude Mmin and b = 1.
Note that equation (2) neglects the upper magnitude cutoff
of the G-R relationship. This is valid if there are not enough
events in the catalog to “see” this cutoff. Thus our null
hypothesis is that the magnitudes are selected from a G-R
distribution with a b value of 1, and that the maximum
magnitude cutoff is significantly larger than the largest event
in our data set (which has a magnitude of 7.3). A b value of 1
is found to fit Southern California seismicity as a whole
[Hutton et al., 2010].
[13] We also test a p value statistic that can incorporate

spatially variable b values [see, e.g.,Woessner and Hauksson,
2006], given by p = 1 � (1 � 10b(Mmin�Mmax_observed))N. The
p value statistic given in equation (2) may have greater
power in situations where an anomalously large event could
be fit by relaxing the b value; however, if the true b value
is much greater than 1.0, a truly anomalous event may be

missed. We apply the second p value statistic to the
binned data, assuming the maximum likelihood b value for
each bin. However, we find that this statistic does not
significantly change our results. We will thus focus on the
results for the simpler statistic in equation (2).
[14] We calculate p values for the seismicity in each fault

bin, with Mmin = 2.5 and assuming b = 1. Only 15 of the
155 faults (9.7%) have maximum observed earthquake
magnitudes beyond the 90% confidence level (one sided);
12 of the faults (7.7% of the faults) have maximum events
beyond the 95% confidence level. Furthermore, only two
of the faults have events larger than the 99% confidence
interval (p < 0.01).
[15] The number of events for each segment versus the

magnitude of the largest event is shown in Figure 3a, along
with confidence intervals for 90%, 99%, and 99.9%. In
Figure 3b we generate similar results for synthetic faults. We
synthetically model faults by drawing events randomly from
a G-R distribution with a b value of 1 and no upper magni-
tude cutoff. The synthetic faults are constrained to have the
same total-number-of-events distribution as the real faults.
The largest-event distribution of the real faults and synthetic
faults are not significantly different (see Figure 3). We
therefore have a null result: the largest events in CFM fault
zones are not larger than would be expected were they pulled
randomly from a G-R distribution.
[16] Given that faults form a complex network, and that

catalog events have location errors, it is not always clear
which earthquakes should be assigned to a given fault.
However, varying the distance we include around a fault
surface has little effect on the results. Including events
within 1 km of the fault plane and 20 km of the fault plane,
for example, gives three and two faults, respectively, with
p < 1%. This number of fault bins with p < 1% is not sta-
tistically significant (five such fault bins would be required
for this to be statistically significant at one-sided 95%
confidence).
[17] Even though the magnitude distributions for some

faults show events that appear large by eye, this variation is
to be expected for power law distributions. The largest
magnitudes in this data set are well modeled by a Gutenberg-
Richter distribution. The faults with the three largest maxi-
mum events are shown in Figure 4. The largest earthquake in
Figure 4a, which shows seismicity assigned to the Lavic
Lake fault, is the 1999 M7.1 Hector Mine earthquake. This
fault segment has 1039 earthquakes, and applying equation
(2) gives a p value of 0.026. The 1992 M7.3 Landers earth-
quake is assigned to the Johnson Valley Fault (Figure 4b),
which with 763 events has a p value of 0.012. Figure 4c
shows the seismicity nearest to the Santa Monica fault. For
this fault zone there are 38 earthquakes; the maximum event
in this bin is the 1994 Northridge M6.7 earthquake, which
because of its depth and the northward dip of the Santa
Monica fault is actually closer to the Santa Monica fault, as
defined by the CFM, than to the Northridge thrust fault.
Because of the small number of earthquakes in this bin and
the large maximum event, the p value for this fault segment
is 0.0024. Had the Northridge earthquake been assigned to
the Northridge thrust fault, which contains 706 other earth-
quakes (Figure 4d), many of them aftershocks of the 1994
Northridge main shock, the p value would be 0.044.

Figure 2. Epicenters for earthquakes (M ≥ 2.5, 1981–
2004) within 20 km of the Community Fault Model (CFM)
3.0 faults (surface traces shown with black lines) are colored
according to their distance, in kilometers, from the nearest
CFM fault plane.

PAGE ET AL.: MAGNITUDES NEAR SOUTHERN CALIFORNIA FAULTS B12309B12309

3 of 9



[18] Besides the Santa Monica fault, there is only one
other fault bin that has a p value below 0.01. This is the
Clamshell-Sawpit Canyon fault, which contains only one
event above magnitude 2.5, the 1991 M5.8 Sierra Madre
earthquake. While the Sierra Madre main shock is closest to
the Clamshell fault as defined by the CFM, the aftershocks
of this event are closest to the Sierra Madre fault. Thus the
Clamshell fault has only one event but a large maximum
event, which gives this fault the largest p value in the data set
of 5.0 � 10�4.
[19] Even though the largest event for both of the faults

shown in Figure 4 is much larger than the G-R expectation,
the fault zones, considered as a whole, do not contain
anomalously large events. We expect approximately this
proportion of faults to have maximum observed magnitudes
higher than the G-R extrapolation from small magnitudes
(and we would expect the lowest p values to occur on the
faults that contain the largest earthquakes). This is because
the largest-event distribution for a power law is skewed, as
shown in Figure 5. While the cumulative rate of small events
matches the G-R curve very well, at high magnitudes the
individual samples show much more scatter. The last point

of each sample, when the magnitudes are plotted cumula-
tively, is more likely than not to be above a straight-line
extrapolation from lower magnitudes. Put another way, the
distribution of the last point, shown in black in Figure 5a, is
skewed to the right, and both the median and mean of this
largest-event distribution are higher than the mode, which
corresponds to where the G-R probability distribution func-
tion (plotted in red on the same plot) intersects the x axis.
(Analytically the black probability distribution function for
the largest observed magnitude is equivalent to the deriva-
tive of p(Mmax_observed) in equation (2).)
[20] Thus it is not unexpected that a magnitude-frequency

curve, when plotted cumulatively, will have a perceived
characteristic “bump” in the tail that is actually a byproduct
of power law statistics. In fact, power law statistics implies
that most random draws from a pure G-R distribution will
have a maximum observed magnitude that is higher than a
log linear extrapolation of the low-magnitude rate (for
example, the red line in Figure 5a) appears to predict.
[21] The extreme variability in the tail of a power law is

also evident in subsets of the data, as pointed out by Howell
[1985] and shown in Figure 6. Sorting the data by distance

Figure 3. The largest-event distribution for (a) faults in Southern California and (b) synthetic faults with
magnitudes following a G-R distribution and the same number-of-events distribution as the real faults.
Each circle represents one fault section. The black line shows the G-R extrapolation from small events, which
is typically considered the G-R expectation. In fact, as we discuss in the text, this extrapolation, which corre-
sponds to the peak of the maximum event distribution (the black curve shown in Figure 5a), is below the mean
expectation for the maximum observed event. The blue, green, and red lines show the 90%, 99%, and 99.9%
confidence bounds, respectively, on the magnitude of the largest event, given the number of events assigned
to the fault. Only two of the 155 faults are beyond the 99% confidence bounds, which shows that on the
whole the faults are not more anomalous in terms of their largest events than synthetic faults with earth-
quake magnitudes sampled from a G-R distribution.
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from the CFM faults results in similar variability as the
random subsets shown in Figure 5a. In fact, this variability is
necessary; that is, one of the 10 subsets, on average, must
have a largest event a magnitude unit higher than a G-R
extrapolation from lower magnitudes if the total set of
earthquakes is to follow a G-R distribution as well (since a
data set 10 times the size will have, on average, a largest
observed event 1 magnitude unit higher when b = 1). This
variability in the tail, interestingly, does not decrease with
more data until the data set is large enough to be affected by
the maximum possible magnitude for that region. This sta-
bility of the largest-event distribution with respect to sample
size is shown in Figure 5b.

4. Magnitudes on the Fault Versus in the Bulk

[22] To what extent are earthquakes that nucleate on large,
mapped faults different than earthquakes that nucleate on
smaller faults in the “bulk”? Certainly many of the faults are
readily apparent in seismicity locations; however, are the
large, mapped faults apparent from other features of the
seismicity, namely the magnitude distribution? Although
the major faults in California may accommodate much of the
strain release, it is another question whether large earth-
quakes nucleate near the major faults, given the propensity
for faults to rupture together in single ruptures [Wesnousky,
2008].
[23] The extent to which magnitudes are sensitive to

nucleation location has important implications for hazard
analysis. If, for example, larger earthquakes are more likely

to nucleate closer to mapped faults, this would suggest
increased hazard from potential foreshocks located close to
major faults relative to other regions [see, e.g., Agnew and
Jones, 1991]. Furthermore, if the magnitude distribution is
sensitive to the size of nearby faults, it also suggests that the
G-R magnitude distribution we observe could be an effect of
the fault network geometry.
[24] The magnitude distribution of our catalog does, in

fact, change with distance from the CFM faults, as shown
in Figure 6. The maximum likelihood b value for the 10%
of earthquakes that are closest to the fault is 1.08 � 0.04
at 95% confidence. By contrast the furthest bin from the
CFM faults has a b value ranging from 1.15 to 1.24, at 95%
confidence. The correlation (we use Pearson’s linear corre-
lation in this paper) between the b values for the 10 bins
shown in Figure 6a and the distance of the bins from the
CFM faults is statistically significant. In addition, we can
obtain an extremely statistically significant result which
does not rely on binning at all by calculating the correlation
between the magnitude of each earthquake in the data set
and its distance to the closest CFM fault. This correlation is
�0.026 (it is negative because magnitudes tend to increase
as distance from the fault decreases). While this correlation
may seem small in the absolute sense (as is to be expected
given that the b values are not dramatically different) it is,
in fact, significant at p = 3 � 10�5, as determined from ran-
domly shuffled versions of the catalog. By increasing the
minimum magnitude (see Figure 6b), we can remove enough
earthquakes so as to lose statistical significance; however,
this does not happen for any Mmin ≤ 3.1.

Figure 4. (a–c) Cumulative magnitude-frequency distributions for the three faults with the largest earth-
quakes in the data set. The G-R extrapolation with b = 1 is shown in red. While by eye these faults appear
to contain anomalously large events, on the whole the largest-event distribution among the CFM fault
sections is consistent with G-R behavior. (d) The 1994 M6.7 Northridge earthquake is located closer to
the Santa Monica fault than to the Northridge Thrust fault, as defined by the CFM 3.0; this results in a
magnitude-frequency distribution for the Santa Monica fault that appears more anomalous because the
smaller aftershocks of the Northridge earthquake primarily locate on the Northridge Thrust. It should
be noted that picking out the faults with the largest earthquakes will naturally result in distributions that
appear to violate G-R behavior; however, this is a result of data selection, and when we analyze all the
faults, we find that the largest earthquakes do not violate G-R behavior.
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[25] One effect that could be causing the b value change is
short-term catalog incompleteness following large earth-
quakes. Since we are testing for nonstationarity in the mag-
nitude distribution function, it is extremely important that
any time intervals included in the catalog be complete down
the cutoff magnitude, which we choose to be Mmin = 2.5.
It is well known that because of aftershocks and coda waves,
catalogs are incomplete immediately following earthquakes.
This phenomenon is known as short-term aftershock

incompleteness [Kagan, 2004]. We account for this known
effect by removing time periods of the catalog following
each event; the amount of time removed depends on the
magnitude of the event.
[26] Events are removed within a time interval of

t ¼ max 10 M�Mmin�4:5ð Þ=0:76 days
30 sec

;

�
ð3Þ

Figure 5. (a) One hundred samples of 1000 random G-R events are shown in blue, and input G-R dis-
tribution is shown in red (note that the G-R distribution function extends below the x axis). As expected,
the largest deviations from the red line are at the high magnitudes. Furthermore, the distribution of the
maximum observed event in each sample (black) is a skewed distribution. Even though the maximum
of the distribution agrees with the red G-R curve, both the mean and median of the distribution are higher.
This shows an important fact of power law statistics: it is more likely than not that the largest event in
a G-R sample will be larger than an extrapolation from rates of smaller earthquakes. (b) The variation
from sample to sample in the largest event is stable for samples with N ≳ 10 events. Thus, provided that
there are not enough events to sample the maximum possible magnitude, obtaining more data does not
reduce the scatter expected in the tail of the distribution.
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following each earthquake with magnitude M. The top
expression is taken from [Helmstetter et al., 2006]. In addi-
tion, for conservatism, we have added a minimum time
window removal of 30 sec for all events. This leaves only
2438 earthquakes in the catalog; however, magnitude is still
observed to be negatively correlation with distance to the
CFM (p = 3.8 � 10�4). The relation of Helmstetter et al.
[2006] was developed using many aftershock sequences
and thus may be an underestimate for particular sequences,
as shown by Woessner et al. [2011]. However, even a more
strict criterion that removes a time interval of 10t for each
event, as defined by equation (3), leaves a statistically

significant negative correlation. Therefore we conclude that
the observed b value change is not caused by short-term
aftershock incompleteness.
[27] It should be noted that the CFM faults have been

established using seismicity (in addition to surface traces,
seismic reflection profiles, and wellbore data) [Plesch et al.,
2007]. If many of the faults in the CFM are drawn such that
they are close to the largest earthquakes in the catalog, then
it is not surprising that the magnitude distribution would
change with distance from the faults. However, this result is
just as significant when we restrict our catalog to M < 4.
Therefore we can conclude that the largest earthquakes in

Figure 6. (a) All earthquakes within 20 km of the CFM faults (black) are sorted by distance from the
nearest CFM fault and then divided into 10 sets of equal size. While the variation in the tails of the subset
magnitude distributions is not unusual, there is variation in the magnitude distribution with distance from
the faults that can be seen. The nonuniform b values of these subsets as well as the correlation between the
magnitude and distance to the CFM are both statistically significant. (b) The b values for the 10 subsets as
a function of minimum magnitude are shown. The 95% confidence error bars are shown for the closest bin
to the faults; these error bars are approximately the same width for the other bins since each bin contains
an equal number of earthquakes. The correlation between magnitude and distance from the CFM faults is
statistically significant for a minimum magnitude between 2.5 and 3.1.
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the catalog (M ≥ 4) are not driving this result. The best test
to ensure that there is no circularity between the develop-
ment of the CFM and changes in the magnitude distribution
with respect to it would be to perform these tests on the
portion of the catalog developed post-CFM. Unfortunately,
this version of the CFM was last updated in January 2004,
which is roughly coincident with the end of our catalog.
Newer relocated catalogs are not yet available; in the future
an updated catalog will allow one to test whether this effect
is observed in seismicity not used to develop the CFM.

5. Discussion

[28] We observe highly statistically significant changes in
b value with distance from the major faults in Southern
California, as defined by the CFM 3.0. If these observed
b value changes are persistent in time (and, importantly, are
not caused by the process by which the CFM is defined) and
extend up to high magnitudes then it suggests that earth-
quakes nucleating near major faults have greater potential to
become large earthquakes. Importantly, this b value change
is a different phenomenon than spatial maximum-magnitude
variation; it suggests that even if the maximum possible
magnitude is sufficiently large, it is still less likely that an
earthquake nucleating 10–20 km from a major fault in
Southern California to be large in magnitude compared to an
earthquake nucleating within, for example, 1 km from a
major mapped fault. This result also suggests that the lengths
of local faults influence the magnitude distribution (to the
extent that the faults represented in the CFM are the longest
and most well defined), which is surprising given that faults
are known to “link up” as a fault network, as evidenced by
earthquakes that rupture multiple faults.
[29] The more complex, nonplanar fault surfaces as

defined in the CFM 3.0 are necessary to clearly see the
observed b value variation. The changes in b values observed
between different bins when earthquakes are sorted with
distance from the CFM, as shown in Figure 6, are not sta-
tistically significant for the same earthquakes sorted by dis-
tance to the CFM version 2.5, although the correlation
between magnitude and distance from the fault for the
unbinned data is borderline statistically significant (this test
has greater power).
[30] Interestingly, while we do see evidence of fault

geometry influencing the magnitude distribution, we do not
see evidence of non-G-R behavior for the largest earth-
quakes. Could faults have characteristic behavior beyond
the magnitudes available in the instrumental catalog? We
limited our analysis to the modern catalog, which does limit
our ability to constrain the magnitude distribution at magni-
tudes greater than 7. However, if the regional G-R relation-
ship is a result of the power law distribution of fault lengths,
as suggested byWesnousky [1999], this suggests that smaller
faults have characteristic behavior at smaller magnitudes.
Our data set contains segments from long faults such as the
San Andreas fault, as well as far smaller faults; still, we see
no evidence of anomalously large events for any of the fault
zones.
[31] It seems that fault geometry does influence the magni-

tude distribution, but through the b value (which changes the
rates at all magnitudes) rather than at characteristic magni-
tudes. Magnitude distributions may appear “characteristic”

by eye, but this is, in fact, due to the large intrinsic vari-
ability of samples from a power law distribution. This work
shows that the available data is consistent with the null
hypothesis of G-R scaling near major faults.

6. Conclusion

[32] Many seismic hazard products rely on the assumption
that earthquakes that nucleate on a major fault are different
(e.g., likely to be larger in magnitude) than those that
nucleate “in the bulk” (i.e., on smaller, unmapped faults).
We do, in fact, see changes in the magnitude distribution
with distance from the major faults, however, they are not
of the “characteristic” variety typically included in such
models. We see evidence for changes in b value but do not
see evidence for non-G-R behavior for the largest events.
Still, these changes in b value, although small, can have a
large effect on rates at high magnitudes and are therefore
important for seismic hazard analysis.

[33] Acknowledgments. We would like to thank J. Woessner and
E. Hauksson for providing their rCFM catalog and K. Felzer and J. M.
Carlson for many helpful discussions.
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